Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add filters

Language
Document Type
Year range
1.
Indoor Air ; 2023, 2023.
Article in English | ProQuest Central | ID: covidwho-2297676

ABSTRACT

The purpose of this study was to measure the number and concentration of airborne particulates occurring in a dental clinic while performing dental procedures, with and without the simultaneous use of air purifier systems and a central ventilation system. The initial background concentrations of airborne particulates recorded during dental procedures, i.e., grinding of natural teeth and metals, without the use of air purifier systems, and with closed windows, reduced by 68% for ΡΜ10, 77% for ΡΜ2.5, and 81% for ΡΜ1 when the same procedures were carried out with the simultaneous use of air purifying systems. In addition, measurements taken during patient treatment showed that an operating central ventilation system contributes to the reduction of airborne particles by a significant 94% for ΡΜ10, 94% for ΡΜ2.5, and 88% for ΡΜ1 compared to dental procedures performed without the simultaneous use of air purifiers. Air purifying systems were also observed to contribute to the further reduction of airborne particulates when dental procedures were performed in combination with an operating central ventilation system. The majority of particles captured had diameters of 0.25-0.30 μm, 0.5 μm, and 1.0-4.0 μm, while particles with diameters of >5.0 μm were the least commonly observed in all experiments. Finally, a statistically significant difference between concentrations of particulate matter was recorded during dental procedures carried out with and without the simultaneous operation of air purifiers and central ventilation system increasing the risk of SARS-CoV-2 virus contamination in dental clinics due to the aerosols emitted by the use of common dental instruments during standard treatments.

2.
Aerosol Science and Technology ; 57(2):134-152, 2023.
Article in English | ProQuest Central | ID: covidwho-2230508

ABSTRACT

The SARS-CoV-2 pandemic forced many restrictions upon the public, such as the closing of schools, affecting social development and education of children. Here we tested air purifiers with HEPA filters as a measure to reduce the infection risk via airborne transmission during classes. We evaluated the efficiency and long-term performance of three devices over six month of operation at two schools by monitoring the particle decay from 0.003 to 10 µm. We found that the particle concentration was reduced reliably and spatially homogenously by 85 − 95% throughout the whole observed particle spectrum within ∼20 min for air exchange rates between 4.8 and 6.7 h−1. During the study we did not observe a clear decline in efficiency or performance of the air purifiers. We complemented our particle measurements with model calculations to estimate the virus concentration and inhaled dose of a susceptible person, assuming one infectious person was present. We calculated that the additional use of air purifiers reduced the number of potentially inhaled viruses at the end of the day by a factor of 2.65 relative to the case without air purifiers. Further, school-wide surveys indicated that the disturbance by the noise level of the air purifiers is to be considered and that the acceptance of air purifiers can be improved when the noise level is reduced. Overall, our study suggests that a combination of air purifiers and venting is a well-suited measure to reduce the potential indoor viral-load while still introducing fresh air into the room.

3.
Atmospheric Chemistry and Physics ; 22(14):9483-9497, 2022.
Article in English | ProQuest Central | ID: covidwho-1954573

ABSTRACT

In this work we present airborne in situ trace gas observations of hydrogen peroxide (H2O2) and the sum of organic hydroperoxides over Europe during the Chemistry of the Atmosphere – Field Experiments in Europe (CAFE-EU, also known as BLUESKY) aircraft campaign using a wet chemical monitoring system, the HYdrogen Peroxide and Higher Organic Peroxide (HYPHOP) monitor. The campaign took place in May–June 2020 over central and southern Europe with two additional flights dedicated to the North Atlantic flight corridor. Airborne measurements were performed on the High Altitude and LOng-range (HALO) research operating out of Oberpfaffenhofen (southern Germany). We report average mixing ratios for H2O2 of 0.32 ± 0.25, 0.39 ± 0.23 and 0.38 ± 0.21 ppbv in the upper and middle troposphere and the boundary layer over Europe, respectively. Vertical profiles of measured H2O2 reveal a significant decrease, in particular above the boundary layer, contrary to previous observations, most likely due to cloud scavenging and subsequent rainout of soluble species. In general, the expected inverted C-shaped vertical trend with maximum hydrogen peroxide mixing ratios at 3–7 km was not found during BLUESKY. This deviates from observations during previous airborne studies over Europe, i.e., 1.64 ± 0.83 ppbv during the HOOVER campaign and 1.67 ± 0.97 ppbv during UTOPIHAN-ACT II/III. Simulations with the global chemistry–transport model EMAC partly reproduce the strong effect of rainout loss on the vertical profile of H2O2. A sensitivity study without H2O2 scavenging performed using EMAC confirms the strong influence of clouds and precipitation scavenging on hydrogen peroxide concentrations. Differences between model simulations and observations are most likely due to difficulties in the simulation of wet scavenging processes due to the limited model resolution.

4.
Applied Sciences ; 12(4):2088, 2022.
Article in English | ProQuest Central | ID: covidwho-1707508

ABSTRACT

Featured ApplicationPersonalized ventilation systems for improving air quality around passengers in confined vehicles, such as airplanes.In the last decade, there has been an increase in ease and affordability of air travel in terms of mobility for people all around the world. Airplane passengers may experience different risks of contracting airborne infectious diseases onboard aircraft, such as influenza or severe acute respiratory syndrome (SARS-CoV-1 and SARS-CoV-2), due to nonuniform airflow patterns inside the airplane cabin or proximity to an infected person. In this paper, a novel approach for reducing the risk of contracting airborne infectious diseases is presented that uses a low-momentum personalized ventilation system with a protective role against airborne pathogens. Numerical simulations, supported by nonintrusive experimental measurements for validation purposes, were used to demonstrate the effectiveness of the proposed system. Simulation and experimental results of the low-momentum personalized ventilation system showed the formation of a microclimate around each passenger with cleaner and fresher air than produced by the general mixing ventilation systems.

SELECTION OF CITATIONS
SEARCH DETAIL